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Abstract

In the paper, a modification of well known extended Masing�s rules is suggested in order to provide more flexible
description of stress–strain relationships of different materials. Particularly, the modification allows us to regulate
the dependence of the damping ratio on the strain amplitude in the process of cycle deforming of a material. As the
four extended Masing�s rules have a good mechanical basis in models of Iwan�s type, it is appropriate to retain whenever
possible the main context of these rules. The suggestion consists only in modification of the second rule, in which
instead of the scaled backbone curve another function is considered. The two cases of hysteretic systems are studied:
the system with limited stress when strain increases without bound, and the system with constant stiffness (linear back-
bone curve) into which hysteretic properties are introduced. For a number of dynamic examples, a comparison of
different hysteretic models is carried out.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The well known extended Masing�s rules, defining relationships between stress s and strain c, are based
on the behaviour of a mechanical system comprising large (infinite) number of Prandtl�s elements (joined in
parallel) or the elements, each of which consists of a spring in parallel with a Coulomb�s slider, joined in
series. Actually, the first variant of the system has been used by Masing (1926) for derivation of his rules
(the two rules of the four extended rules). The above models are called in publications as Iwan�s models
(Iwan, 1966; Iwan, 1967) although they were known much earlier. It seems appropriate to give here the for-
mulation of the four extended Masing�s rules (Kramer, 1996)
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1. For initial loading, the stress–strain curve follows the backbone curve s = Fbb(c).
2. If a stress reversal occurs at a point defined by (crev,srev), the stress–strain curve follows a path given by
Fig. 1.
obeyin
s � srev
2

¼ F bb

c � crev
2

� �
ð1Þ
3. If the unloading or reloading curve exceeds the maximum past strain and intersects the backbone curve,
it follows the backbone curve until the next stress reversal.

4. If an unloading or reloading curve crosses an unloading or reloading curve from the previous cycle, the
stress–strain curve follows that of the previous cycle.

Regarding the third rule, note that it relates also to the case when maximum past strain, but with oppo-
site sign, is exceeded. The attempts to modify the Masing�s rules have been made among others by Pyke
(1979), Archuleta et al. (1999) and Osinov (2003). Pyke (1979) retains only the first rule and uses for sub-
sequent loadings and unloadings, hyperbolic curves with an asymptotes defined by strength of the material.
Advantages of such a treatment consist in simplicity of tracking the stress–strain relationship, and in lim-
itation of stresses by the strength of the considered material. Let us consider how a departure fromMasing�s
rules can lead to significant changes in the behaviour of the model. Assume, e.g. that the backbone curve is
a hyperbola with an initial modulus Gmax and limit stress su
y ¼ x
1þ x

ð2Þ
where x and y are the normalized strain and stress, respectively, which are defined by a strain c and stress s
as follows:
x ¼ c
cr
; y ¼ s

su
; cr ¼

su
Gmax

ð3Þ
0 2
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

1 3 4 5

Example to Pyke�s model: non-symmetrical cycles for deformation result in symmetry for stresses. Dashed line represents model
g Masing�s rules.



G. Muravskii / International Journal of Solids and Structures 42 (2005) 2625–2644 2627
Such normalization is desired for any backbone curve with limited strength. Consider for backbone
curve (2) strain controlled deforming beginning from x = 0 and having repeatedly reversal points at
x = 5 and x = 4. According to Pyke�s model, we obtain the stress–strain relationship shown in Fig. 1. With
increase in number of cycles stresses become symmetrical; such behaviour differs from that of Masing�s
model represented by the dashed line in Fig. 1. Note that Pyke�s model appears to be suitable for descrip-
tion of the behaviour of granular materials in processes of deformation like described above. The second
example relates to the following series of reversal points: x = 2j, 2j � 0.1 (j = 1,2, . . .). The stress–strain
curve is represented in Fig. 2 where the dashed line corresponds to the Masing�s model. The disposition
of loading and unloading parts of the stress–strain curve for Pyke�s model indicates on the violation of
Drucker�s stability postulate (see Shames and Cozzarelli, 1992; Goodier and Hodge, 1958) which states
in essence that energy put into plastic deformation cannot be recovered. Consider an initial equilibrium
of a body corresponding to point A (Fig. 3). Let some external agency apply an additional force to the body
and then remove it. The corresponding process could be represented by the unloading path AB and reload-
ing path BC. According to Drucker�s postulate, the work done by the external agency (i.e. by additional
stresses) is non-negative. This leads to the relationship E1 P E2 where E1 and E2 areas indicated in Fig.
3. Parts of stress–strain history represented by solid line in Fig. 2 do not satisfy this requirement. The
behaviour similar to that of Pyke�s model is observed in other models, e.g. suggested by Osinov (2003),
Archuleta et al. (1999), Bouc–Wen model (Bouc, 1967; Wen, 1976).

One of the important characteristics of a model is the damping ratio corresponding to symmetric cyclic
deforming of a material. Classical Masing�s model as well as such models as Pyke�s model do not allow reg-
ulating this parameter which in practice can be smaller than that predicted by themodels.Model of Archuleta
et al. allows weak regulating the damping making it however too large. The models suggested by Muravskii
and Frydman (1998), Muravskii (2001) and Osinov (2003) are intended for eliminating above shortcomings.

In the paper, some hysteretic models are constructed which differ from the model obeying four extended
Masing�s rules only in the second rule: instead of the scaled backbone curve (1), a function U(u) satisfying
some requirements is applied. Eq. (1) is taken in the form
Fig. 2.
line).
s ¼ srev þ Uðc � crevÞ ð4Þ
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Note that the function U(u) corresponding to Eq. (1) has the form
UðuÞ ¼ 2F bbðu=2Þ ð5Þ

Function U(u) will be called hysteresis function.
2. Constructing hysteresis function for material with limited strength

The function U should satisfy (similarly to the backbone curve) the condition of antisymmetry, i.e.
U(�u) = �U(u), and contain as a parameter the absolute values of strain, cbb, at which the point (c,s) leaves
the backbone curve because of unloading or reloading. This parameter remains without changes until the
point (c,s) starts to move again along the backbone curve (according to the third rule) and afterwards
abandons it at a new value cbb. For symmetric cycle deforming, the amplitude of deformations equals
the parameter cbb. An important property of the relationship (4) with the condition of antisymmetry men-
tioned above is that after an unloading with a following reloading a point comes back into the reversal
point where the unloading began (similarly to the classic Masing�s model). In addition, the following
requirements are imposed on the function U and its derivatives
ðiÞ Uð0Þ ¼ 0

ðiiÞ U0ð0Þ ¼ F 0
bbð0Þ

ðiiiÞ Uð2cbbÞ ¼ 2sbb
ðivÞ U0ð2cbbÞ ¼ F 0

bbðcbbÞ
ðvÞ U0ðuÞ > 0 and U00ðuÞ < 0 for 0 6 u 6 2cbb

ð6Þ
where sbb = Fbb(cbb). All these relationships stem from the properties of the scaled backbone curve entering
the Eqs. (1) and (5). When using normalized values according to (3) c and s are changed to x and y, respec-
tively, in above relationships; in this case initial derivative in (ii) equals one. Additional parameters which
can enter function U allow us to regulate its behaviour in intermediate parts of the interval (0,2cbb) and thus
to influence the form of hysteresis loops and damping properties of the model.

Using normalized strain and stress x,y, consider as an illustration two simple functions for constructing
function U, logarithmic function suggested by Puzrin and Burland (1996)
UðuÞ ¼ uf1� a½lnð1þ jujÞ
Rg ð7Þ
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and function used by Davidenkov (1938)
UðuÞ ¼ uð1� ajujRÞ ð8Þ

Requirements (i), (ii), (v) in (6) are satisfied. For the logarithmic function (7) we obtain from (iii) and (iv)
R ¼ ½ybb � xbbF 0
bbðxbbÞ
ð1þ 2xbbÞ lnð1þ 2xbbÞ
2xbbðxbb � ybbÞ

ð9Þ

a ¼ xbb � ybb
xbb½lnð1þ 2xbbÞ
R

ð10Þ
For function (8), parameters R and a are as follows:
R ¼ ½ybb � xbbF 0
bbðxbbÞ


xbb � ybb
ð11Þ

a ¼ xbb � ybb
xbbð2xbbÞR

ð12Þ
Eqs. (9)–(12) show explicitly how parameter xbb, defined as absolute value of the normalized strain at
which the backbone curve is abandoned by the point (x,y) because of unloading or reloading, enters func-
tion U. Practically, the suggested method (besides flexibility in choosing function U) differs from that based
on original four extended Masing�s rules only in necessity to fix parameter cbb (or xbb) and use it at corre-
sponding stages of the deformation history. In Fig. 4(a) and (b) hysteresis loops corresponding to function
(5), (7) and (8) are shown in the case of hyperbolic backbone curve (2) for values of strain amplitude
xbb = 5,10; dashed lines represent the backbone curve. In Fig. 5, the damping ratio D defined as the loop
area divided by 2pxbbybb is represented as a function of the strain amplitude xbb for the three considered
hysteresis functions. We see that the energy dissipation corresponding to large strain amplitudes is signi-
ficantly smaller for functions (7) and (8) than for Masing�s function (5), whereas in the case of small ampli-
tudes, results for all the functions are closely related. These hysteresis functions do not allow regulating the
damping ratio of a material because of small number of parameters. Note that functions (7) and (8) are
more suitable for soils than the Masing�s function (5) which leads to the limit value (for infinite amplitudes
xbb) of damping ratio Dmax equal to 2/p. Experiments (e.g. Hardin and Drnevich, 1972a; Hardin and
Drnevich, 1972b) give the maximum values of damping ratio lying in a vicinity of 0.3.

For more flexible description of the hysteretic behaviour of a model, one can apply functions having
more parameters than the functions described above. Consider the function suggested by Muravskii (1996)
UðuÞ ¼ d1uþ
ðd0 � d1Þt
1þ gjtjR

; t ¼ uð1� bjujqÞ ðR; q; b > 0; g P 0Þ ð13Þ
where d1 is set equal to the derivative at the end point u = uE = 2cbb of the considered interval (0,uE)
according to (iv), d0 is the derivative at u = 0 (d0 = 1 in the case of the above normalization). The require-
ment (iv) for the derivative U 0(u) at the point uE leads to
b ¼ 1

ð1þ qÞuqE
ð14Þ
which follows from the condition that the derivative t by u must be zero at the point. The Eq. (iii) in (6)
allows defining parameter g
g ¼ ðtE=urÞ � 1

tR
ð15Þ
E
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Fig. 4. Hysteresis loops corresponding to hysteresis function (5), (7) and (8) in the case of hyperbolic backbone curve (2) for 2 values of
strain amplitude xbb = 5 (a) and 10 (b).
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where
tE ¼ uEð1� buqEÞ ¼
quE
qþ 1

¼ 2qcbb
qþ 1

ð16Þ

ur ¼
UðuEÞ � d1uE

d0 � d1

¼ 2
sbb � d1cbb
d0 � d1

ð17Þ
The condition gP 0 leads to
q P q0 ¼
1

ðuE=urÞ � 1
ð18Þ
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If q = q0 then g = 0, and the considered function has the form of Davidenkov�s function (8). A limitation
for parameter R following from requirement (v) in (6) is (Muravskii, 1996)
R 6 R0 ¼
1

1� urðqþ 1Þ=ðuEqÞ
ð19Þ
We see that after satisfying relationships (6) due to defining parameters b and g according to (14) and
(15), the two free parameters, q and R, remain. They can be used for regulating function properties in inter-
mediate points of the interval (0,uE). The value of R0 is greater than one and tends to one with increase in
uE. First consider the relationship between R and the damping ratio of the model for very large values of the
normalized strain amplitude xbb, when independently of the form of a backbone curve one can take nor-
malized stress ybb = 1, F 0

bbðxbbÞ ¼ 0. Choosing normalized strain amplitude xbb = 10,000, calculations of
damping ratio have been made for values of R = R* (the notation indicates that the parameter is related
to the taken large amplitude) from interval 0 < R* 6 1 and the following values of q
q ¼ q0 þ 2

R
ð20Þ
Thus limitations (18) and (19) have been taken into account. In Fig. 6 the values R* are presented as a
function of the values Dmax of damping ratio for xbb = 10,000. Dmax can be considered practically as max-
imum values i.e. relating to infinite strain amplitudes. For R* = 1 the value Dmax = 0.6355 which is close to
the mentioned above limit value 2/p or 0.6366. Underline that the results represented in Fig. 6 are indepen-
dent of the kind of a backbone curve with limited strength. The function of Fig. 6 allows the following very
precise polynomial approximation
R� ¼ 1:5532Dmax þ 1:5819D2
max � 3:6843D3

max þ 1:9601D4
max ð21Þ
The curve representing this equation practically coincides with the curve in Fig. 6 obtained with above
calculations.

Defining damping ratio for different values of strain amplitudes xbb we can change parameters R with
changes in xbb or use constant value R = R*. As an example, let us retain R = R* for all values of strain
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amplitudes keeping q by (20). As a result we obtain the damping ratio dependence on the strain amplitude
shown in Fig. 7 for values of Dmax = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6355 and the corresponding values of R*

defined according to (21) R* = 0.167651, 0.347578, 0.524732, 0.688767, 0.834044, 1.00004 (hyperbolic back-
bone curve is used). The dashed line in Fig. 7 represents results relating to the original four extended
Masing�s rules with the hyperbolic backbone curve. Note that in the case with R depending on the normal-
ized strain amplitude according to the equation
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backbone curve); dashed line corresponds to the original four extended Masing�s rules.
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R ¼ R� 1:3þ xbb
1þ xbb

ð22Þ
the dashed line and the line for R* = 1 (Dmax = 0.6355) in Fig. 7 merge with each other. Also the corre-
sponding hysteretic loops will be in this case practically identical for any value of strain amplitudes.

For a given value of Dmax parameter R* can be found using Eq. (21), and afterwards one can obtain the
required curve which relates damping ratio to strain amplitude. Apparently, Eq. (20) for q and value R in
the form
R ¼ R� Aþ xbb
Bþ xbb

ð23Þ
can be recommended. The positive constants A and B allow us to regulate behaviour of the damping ratio
at small and intermediate values of the normalized strain amplitude xbb.
3. Comparison some hysteretic models allowing damping regulation

Besides the model constructed in this paper consider additional two models which are capable to de-
scribe not only stiffness but also damping properties of a material: quasi hysteretic model (Muravskii,
1994; Muravskii and Frydman, 1998) and elasto-hysteretic model (Muravskii, 2001). In the elasto-hyster-
etic model the stress is taken in the form
s ¼ ksh þ ð1� kÞF bbðcÞ ð0 6 k 6 1Þ ð24Þ
where sh is the stress corresponding to Masing�s model with Fbb(c) as backbone curve. The second term in
(24) represents elastic part of the model. It is possible to regulate the maximum value Dmax of damping ratio
by variation of parameter k however the behaviour of the damping ratio for intermediate values of strain
amplitudes remain similar to that for the pure Masing�s model (with coefficient k).

The constitutive equation for quasi hysteretic model has the form
s ¼ CdegGðcmÞ c þ gðcmÞ
cm
_cm

_c

� �
ð25Þ
where Cdeg is coefficient of degradation (see Muravskii, 1994; Muravskii and Frydman, 1998) G(cm) and
g(cm) two function depending on mean value (relative to time) of strain cm; _c and _cm are strain rate and
mean value of strain rate, respectively. In the further examples, Cdeg = 1. The weighted mean value is deter-
mined as follows:
zm ¼ ðnþ 1Þ
tnþ1

Z t

0

snz2ðsÞds
� �1=2

; ðz ¼ c; _cÞ ð26Þ
As the parameter n is made greater than 0, correspondingly more relative weight is given to data close to
time t. Eq. (25) leads to frequency independent loss of energy for steady-state harmonic processes; corre-
sponding hysteretic loops have elliptic forms. The name �quasi hysteretic� appears to be suitable since the
rate of strain is included in constitutive Eq. (25), whereas the term �hysteresis� is understood here as rate
independent behaviour (we apply the definition used in book by Visintin (1994): hysteresis = rate indepen-
dent memory effect). Note that frequency independent damping is often referred to as hysteretic or ideal
hysteretic damping in contrast to viscous damping (see Muravskii, 2004). In papers by Muravskii
(1994), Muravskii and Frydman (1998) is shown how to construct the function G(cm) and g(cm) in order
to obtain the needed behaviour for secant shear modulus and damping ratio in a cyclic process of defor-
mation. The quasi hysteretic model allows us to satisfy more precisely experimental data on damping than
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the elasto-hysteretic model which has only one parameter, k, influencing the damping behaviour of the
model in cyclic processes.

Let us compare shapes of hysteretic loops for the three considered models. To make all the models equiv-
alent regarding to the damping behaviour, the dependence of damping ratio on strain amplitudes for the
new model and the quasi hysteretic model is adjusted to the elasto-hysteretic model, i.e. (for the hyperbolic
backbone curve)
D ¼ k
4ð1þ xbbÞ

px2bb
xbb � lnð1þ xbbÞ �

x2bb
2ð1þ xbbÞ

� �
ð27Þ
where xbb is normalized strain amplitude, k = pDmax/2. Eq. (27) is good approached by suitable choice of
constants in Eq. (23) for the new model, e.g. for Dmax = 0.3 the constants provided good approximation
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G. Muravskii / International Journal of Solids and Structures 42 (2005) 2625–2644 2635
are: A = 13.7, B = 18.9. For the quasi hysteretic model the dependence (27) can be introduced into calcu-
lations directly. In Fig. 8(a) and (b) hysteretic loops are shown for values xbb = 5, 10 and Dmax = 0.3. Note
that in the case of quasi hysteretic model the elliptical loop is established for sinusoidal strain variation after
a number of cycles, whereas for the two remaining models one cycle is enough for obtaining the hysteretic
loop. All three loops have practically equal area. Apparently, the loop shape corresponding to the model
suggested in this paper is more suitable for describing experimental results for soils than shapes obtained in
the other two models.

For illustration how the damping influences the response of a non-linear hysteretic mechanical system in
dynamics consider some examples. Let a mass m be attached to a spring which obeys the non-linear hys-
teretic stress–strain relationship. We keep notations Gmax, s, c for the initial stiffness, force, displacement,
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respectively (as the �spring� one can image a shear rod which has square cross section with unit sides). Equa-
tion of motion has the form
m€c þ s ¼ T ð28Þ

where T is an external force. Using the normalized values x and y according to (3) and the non-dimensional
time
~t ¼ t

ffiffiffiffiffiffiffiffiffiffi
Gmax

m

r
ð29Þ
leads to
d2x

d~t2
þ y ¼ eT ð30Þ
where eT ¼ T=su. This equation was solved numerically in the case of hyperbolic backbone curve (2) for the
three considered models in the case of T = 0, x(0) = 0 and value of initial derivative dx=d~t equal to 5 (action
of an instantaneous impulse); maximum values of damping ratio are Dmax = 0.1, 0.3, 0.4 with the damping
dependence on normalized amplitudes according to (27). In the case of quasi hysteretic model parameter n
entering the mean value definition (26) is taking equal to 2. Numeric integration is carried out using method
of constant mean accelerations (a particular case of the well known Newmark�s method) with iterations.
The four extended rules with the constructed hysteresis function U(u) (instead of the scaled backbone func-
tion) allow us to compute forces (and therefore accelerations from (30)) knowing displacements at the end
of an integration step for the each iteration. In turn, these displacements (and also velocities) are found
from relationships of the method of constant mean accelerations using the known state at the beginning
of the time step and end acceleration. The latter is set previously equal to the initial (at the step beginning)
acceleration and then is defined more exactly by iterations. One can find brief description of the algorithm
(for quasi hysteretic model) in papers by Muravskii (2004) and Muravskii and Frydman (1998). Results of
calculations are represented in Fig. 9(a)–(c) for the indicated values of Dmax, respectively. In Fig. 9(c) also
the plot corresponding to the pure Masing�s model (Dmax = 2/p) is shown; to this plot should tend (with
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-0.2

-0.1

0

0.1

0.2

a/g

t (sec)
1 2 3 5 6 8
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increase in Dmax) plots corresponding to the new model and the elasto-hysteretic model. Because of discrep-
ancies in the form of hysteretic loops for these two models the responses on the impulse action differ sig-
nificantly after the first period of vibration. In the example, the elasto-hysteretic model leads to practically
zero residual displacements even for Dmax = 0.3, and only for greater values of Dmax the noticeable residual
displacements occur. For the quasi hysteretic model displacements after impulse action tend with time to
zero.

Further consider an example of seismic response analysis for a 50m sand layer having a density
q = 2000kg/m3. The layer is connected at its bottom to bedrock. We take the following values for the shear
strength su and the initial modulus Gmax of soil at the depth H = 50m: su(H) = 170KPa, Gmax(H) = 200
MPa. The following behaviour of values su and Gmax with depth h is assumed
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Fig. 11. Surface accelerations for three hysteretic models for values of maximum damping ratio 0.2 (a), 0.3(b) and 0.4(c); backbone
curve is hyperbolic.
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suðhÞ ¼ suðHÞ 0:2þ h=H
1:2

ð31Þ

GmaxðhÞ ¼ GmaxðHÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2þ h=H

1:2

r
ð32Þ
The earthquake vibration input at rock outcrop is the E–W record of the October 1, 1987 Whittier earth-
quake, recorded at the Mt. Wilson–Caltech Seismic Station (maximum acceleration 0.175g), the corre-
sponding accelerogram is represented in Fig. 10. A one-dimensional problem associated with
propagation of shear waves through the soil layer is studied. In calculations, the interaction between the
bedrock (which is assumed as elastic with shear modulus GR and density qR) and the soil layer is considered;
the ratio of the value GRqR to the value Gmax(H)q is taken equal to 75.

The backbone curve (normalized) is chosen in the form of hyperbola (2), the value of Dmax is assumed to
be constant in the layer; the dependence of the damping ratio on strain amplitude for the three considered
models corresponds to the elasto-hysteretic model, i.e. to Eq. (27) (for the hyperbolic backbone curve). The
problem is solved by dividing the soil layer into N elements and referring to displacements of nodal points uj
(j = 0, . . . ,N). The distribution of displacements within elements is assumed to be linear, leading to constant
values of strain. Mass is concentrated at nodes, and, when writing equations of motion for nodes, stresses
are taken in middle points of elements. For integration in time, the method of constant average accelera-
tions with iterations is used (as above in the case of single-degree-of-freedom system). Calculations have
shown that the value N = 50 along with the time step Dt = 0.00025s provide a good precision by solving
the problem. When using the quasi hysteretic model we take n = 2 in Eq. (26) giving more relative weight
to data close to current time t, which leads to a quicker response of material characteristics on changes in
the level of deformation. In Fig. 11 accelerations at the soil surface are represented for values of maximum
damping ratio Dmax = 0.2, 0.3, 0.4. The influence of the damping on peak values of output acceleration is
especially high for elasto-hysteretic model: amplification factor (ratio of maximum output and input accel-
erations) decreases for this model from 3.65 to 2.22 with increase in Dmax from 0.2 to 0.4. The correspond-
ing values of the amplification factor are 2.72 and 2.24 for quasi-hysteretic model and 1.89 and 1.64 for the
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Fig. 12. Pseudo accelerations at 5% damping corresponding to surface accelerations of Fig. 11(c).
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new model. The results for the three models become closer to each other with increase in the damping ratio.
General pattern of the response are similar for the three models which is exhibited in proximity of pseudo
accelerations (Newmark and Rosenbluet, 1971) which are represented for the three models in Fig. 12 for
surface accelerations of Fig. 11(c).
4. Introducing hysteresis properties of material into system with constant stiffness

In the case with backbone curve having the form of a straight line (case of constant stiffness), formal
application of original Masing�s rules leads to a linear non-dissipative system and therefore is senseless.
However the hysteresis function U which does not depend on backbone curve can be used in the considered
case and also in the case of stiffness increasing with increase of deformation. Consider the backbone curve
in the form
s ¼ G0c ð33Þ

where G0 is the constant stiffness. When constructing the function U, the four extended Masing�s rules with
modified second rule according to Eq. (4) are retained. The requirements (ii) and (iv) in (6) are changed as
follows:
ðiiÞ U0ð0Þ ¼ l1G0

ðivÞU0ð2cbbÞ ¼ l2G0

ð34Þ
where coefficients l1 and l2 with the properties: l1 > 1, 0 < l2 < 1 are introduced. Making the hysteretic
loops nearly symmetrical regarding to the straight line (33) we adopt l1 = 1/l2. Taking the hysteresis func-
tion according to (13), let us set the parameter q = 15 and apply a parameter, a, which determines the value
U(cbb) (in the middle point of the interval 0 < c < 2cbb) as follows:
UðcbbÞ ¼ G0ð1þ aÞcbb ð35Þ

Note that 0 < a < 1. The parameters influencing function U(u) are represented in Fig. 13 where the upper
part of a hysteretic loop formed by the function is shown. Numerous calculations show that the following
relationship between parameters l2 and a is appropriate
l2 ¼ 0:02a þ ð1� aÞ5 ð36Þ

So we can construct a family of hysteretic models and corresponding hysteretic loops depending on para-
meter a, which influences the form of the loops and the damping ratio. Parameter R is determined using
other parameters and the function value at an intermediate point (Muravskii, 1996), i.e. value U(cbb) by
(35), in the form which does not contain G0 and cbb
R ¼ ln
ð1� l2Þ½ðl1 � l2Þð1þ q� 0:5qÞ � ð1þ qÞð1þ a � l2Þ


ð1þ a � l2Þ½ðl1 � l2Þq� ð1þ qÞð1� l2Þ


	
ln
1þ q� 0:5q

2q
ð37Þ
Considering function (13) it can be shown that for applied assumptions the hysteresis function can be rep-
resented in the form
UðuÞ ¼ G0cbbU0ðu=cbbÞ ð38Þ

where the function U0(u) corresponds to the values G0 = 1, cbb = 1. From this the damping ratio indepen-
dence of strain amplitude cbb and stiffness G0 follows, thus only two parameters, G0 and D, are inherent in
the considered hysteretic system. Carrying out calculations for values of parameter a from the interval
0 < a < 1 and determining corresponding values of damping ratio D, the dependence of parameter a on
damping ratio is obtained. The corresponding relationship is shown in Fig. 14. Very precise approximation
for this function is realized by the following equation of the type (13):
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a ¼ 1:438Dþ 0:6485Dð1� 0:957D2Þ
1þ 7:67ðD� 0:957D3Þ2:6

ð39Þ
The curve corresponding to this equation and the original calculated curve in Fig. 14 are practically indis-
tinguishable (discrepancies are less than 0.25%). Note that a 
 2D for small values of D.

For a given value of D, the parameter a can be found by (39) and l2 by (36). Taking q = 15, l1 = 1/l2

and defining R by (37), all parameters determining the function U0(u) according to (13) are available
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independently of strain history. Fig. 15 illustrates hysteretic loops obtained according to the described pro-
cedure for 3 values of D = 0.05, 0.1, 0.2. The normalized strain x used in this illustration can be defined as
the original strain c divided by a reference strain cr (e.g. cr = 0.001) with the corresponding change of G0 toeG0 ¼ G0cr. The recalculated (after the function U0(u) has been constructed) values of D are 0.04990,
0.09979, 0.2002, respectively. This gives estimation for the error entered by application of Eq. (39). Fig.
16 illustrates all the extended Masing�s rules for a relationship between strain and stress for a given strain
history; again a normalized strain x is used. Determination of the parameter cbb(xbb), influencing the func-
tion U at the next stage of the motion, takes place in the points A, E, G.
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Fig. 16. Stress–strain relationship illustrating four extended Masing�s rules for model with constant stiffness.
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The property of the hysteresis function expressed in Eq. (38) leads to partial linearity of the considered
system. It can be shown that for two strain histories, c1(t) and c2(t) = Cc1(t), where C is a constant, the cor-
responding stresses will be in the same proportion: s2(t) = Cs1(t). This property allows us to consider, for
example, the response of the system on the unit instantaneous impulse and use the corresponding propor-
tion for an arbitrary impulse value. Analogously, when studying steady state vibrations under action of a
harmonic force, one can consider only unit force amplitude. Thus it is possible to compare in some cases the
considered non-linear system with linear one. The constructed hysteresis model can serve as a suitable mod-
el for taking account on frequency independent damping supplementing results given in paper by
Muravskii (2004).

Consider one example for a one-degree-of-freedom system. Using Eq. (28) we make variable change (29)
but with G0 instead of Gmax. The equation of motion can be written in the form
0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D = 0.05

γ

t~
0 2 4 6 8 10 12 14 16 18 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D = 0.1

γ

t~

0 2 4 6 8 10 12 14 16 18 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D = 0.2

t

γ

~

(a) (b)

(c)

Fig. 17. Response of hysteretic models with linear backbone curve on an instantaneous impulse for three values of Dmax = 0.05 (a), 0.1
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d2c

d~t2
þ ~s ¼ eT ð40Þ
where the tilde denotes that the corresponding forces are divided by G0 i.e. the �spring� reaction ~s corre-
sponds now to unit value of stiffness. Consider the action of an instantaneous impulse with T = 0,
c(0) = 0 and the value of initial derivative dc=d~t equal to 1. The displacements for values of damping ratio
D = 0.05, 0.1, 0.2 are shown in Fig. 17. For comparison, the results corresponding to a linear model with
viscose damping are represented in the figure (dashed lines). For this model
s ¼ G0c þ l
dc
dt

¼ G0 c þ 2n
dc
d~t


 �
ð41Þ
where coefficient l is a constant and
n ¼ l

2
ffiffiffiffiffiffiffiffiffi
mG0

p ð42Þ
In calculations damping parameter n is taken equal to D which leads to the linear model �equivalent� to
original non-linear hysteretic model. The results of calculations are rather close for the two models in
the case of small damping. With increase of damping the discrepancies become noticeable: for the hysteretic
model the first maximum of displacements does not depend on damping whereas the residual displacement
increases with increase in damping ratio. The linear viscose system has no residual displacement, and the
damping leads to decrease in the first maximum of displacements.
5. Concluding remarks

The hysteretic models developed in the paper are based on the well known four extended Masing�s rules
with using a general function for constructing loading and reloading curves, as an alternative to the scaled
backbone curve inherent in Masing�s rules. This allows us to match more flexible the theoretical results to
experimental data, particularly to regulate damping properties of the model. In the case of backbone curve
with limited stress, the requirements imposed on the hysteresis function are identical to the conditions sat-
isfied by scaled backbone curve besides the behaviour in intermediate points of hysteretic loops. The model
is able to provide the required maximum value of the damping ratio as well as the behaviour of the damping
ratio at small and intermediate values of the strain amplitude. In the case of the backbone curve in the form
of a straight line, the hysteretic model possesses the property of partial linearity which makes it possible to
compare in some cases the hysteretic model with corresponding linear models. Damping ratio is in this case
an independent model parameter which is not influenced by the strain amplitude.
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